Semi-analytical solutions of the nonlinear oscillator with a matrix Lagrange multiplier
نویسندگان
چکیده
منابع مشابه
Nonlinear Programs with Unbounded Lagrange Multiplier Sets
We investigate nonlinear programs that have a nonempty but possibly unbounded Lagrange multiplier set and that satisfy the quadraticgrowth condition. We show that such programs can be transformed, by relaxing the constraints and adding a linear penalty term to the objective function, into equivalent nonlinear programs that have diierentiable data and a bounded Lagrange multiplier set and that s...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملAnalysis of thin plates by a combination of isogeometric analysis and the Lagrange multiplier approach
The isogeometric analysis is increasingly used in various engineering problems. It is based on Non-Uniform Rational B-Splines (NURBS) basis function applied for the solution field approximation and the geometry description. One of the major concerns with this method is finding an efficient approach to impose essential boundary conditions, especially for inhomogeneous boundaries. The main contri...
متن کاملHaar Wavelet Solutions of Nonlinear Oscillator Equations
In this paper, we present a numerical scheme using uniform Haar wavelet approximation and quasilinearization process for solving some nonlinear oscillator equations. In our proposed work, quasilinearization technique is first applied through Haar wavelets to convert a nonlinear differential equation into a set of linear algebraic equations. Finally, to demonstrate the validity of the proposed m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Low Frequency Noise, Vibration and Active Control
سال: 2018
ISSN: 1461-3484,2048-4046
DOI: 10.1177/1461348418769649